Alloy Steel: Properties and Use First-Principles Quantum Mechanical Approach to Stainless Steel Alloys

نویسندگان

  • L. Vitos
  • H. L. Zhang
  • S. Lu
  • N. Al-Zoubi
  • B. Johansson
  • E. Nurmi
چکیده

Accurate description of materials requires the most advanced atomic-scale techniques from both experimental and theoretical areas. In spite of the vast number of available techniques, however, the experimental study of the atomic-scale properties and phenomena even in simple solids is rather difficult. In steels the challenges become more complex due to the interplay between the structural, chemical and magnetic effects. On the other hand, advanced computational methods based on density functional theory ensure a proper platform for studying the fundamental properties of steel materials from first-principles. In 1980’s the first-principles description of the thermodynamic properties of elemental iron was still on the borderline of atomistic simulations. Today the numerous applicationoriented activities at the industrial and academic sectors are paired by a rapidly increasing scientific interest. This is reflected by the number of publications on ab initio steel research, which has increased from null to about one thousand within the last two decades. Our research group has a well established position in developing and applying computational codes for steel related applications. Using our ab initio tools, we have presented an insight to the electronic and magnetic structure, and micromechanical properties of austenite and ferrite stainless steel alloys. In the present contribution, we review the most important developments within the ab initio quantum mechanics aided steel design with special emphasis on the role of magnetism on the fundamental properties of alloy steels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic constants of austenitic stainless steel: Investigation by the first-principles calculations and the artificial neural network approach

Résumé : In this paper, two methods were applied to determine the different elastics constants of the face centered cubic austenitic stainless steel Fe0.62Cr0.185Ni0.185. Firstly, the quantum mechanical simulation was applied based on the first principles calculations within the generalized gradient approximation (GGA) by using the efficient strain-stress method. Secondly an artificial neural n...

متن کامل

Vacuum Brazing of Zirconium-Based Alloy and 321 Stainless Steel Using Titanium Based Filler Metal

Both Zirconium-based alloys and 321stainless steel are widely used as engineering alloys due to their good mechanical properties. Conventional fusion welding techniques for Zr alloys and stainless steel are not feasible due to the formation of brittle intermetallic compounds such as (Zr3Fe, ZrFe2 and Zr2Fe) and corrosion cracking. Brazing is one of the most wide...

متن کامل

An investigation on metallurgical and mechanical properties of vacuum brazed Ti-6Al-4V to 316L stainless steel using Zr-based filler metal

Both Ti-6Al-4V and 316L stainless steels are widely used as engineering alloys. Fusion welding of these two alloys is not easily possible due to their incomplete solubility in each other. Brazing is one of the best choices for joining dissimilar alloys. In this study, wettability experiments were done at 940 and 970 ºC for 5, 15 and 30 min. Also, joining of these two alloys was carried out at 9...

متن کامل

Investigation of Mechanical Properties in Welding of Stainless Steel SA240-TP316 and Steel SA516-GR60 Cladded with Stainless Steel SA240-TP316

Stainless steel cladding is the formation of an alloy by creating a thin layer of stainless steel on another metal. In this research, a layer of SA240-TP316 austenitic stainless steel was coated on SA516-GR60 steel. Experiments were conducted to compare the mechanical properties of SA240-TP316 and claded SA516-GR60 steel welds in order to investigate the possibility of replacing the SA240-TP316...

متن کامل

Dissimilar laser welding of NiTi shape memory alloy to austenitic stainless steel archwires

In this research, dissimilar welding of NiTi shape memory alloy to AISI 304 austenitic stainless steel Archwires was investigated. For this purpose, common straight orthodontic archwire with rectangular cross-section and dimensions of (0.635 × 0.432 mm) were selected and the laser welding technique was used to connect the wires. The microstructure, chemical composition and phasesin the weld zon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012